中国组织工程研究 ›› 2019, Vol. 23 ›› Issue (30): 4763-4768.doi: 10.3969/j.issn.2095-4344.1412

• 复合支架材料 composite scaffold materials • 上一篇    下一篇

人工软骨支架层间的力学性能

陈  磊1,葛为民1,2,吕林蔚1,2,雷  鸣3,Teresa Zielińska4,邢恩宏1,2
  

  1. 1天津理工大学,天津市先进机电系统设计与智能控制重点实验室,天津市  300384;2机电工程国家级实验教学示范中心(天津理工大学),天津市  300384;3天津理工大学计算机科学与工程学院,天津市  300384;4华沙理工大学,波兰华沙  00-661
  • 收稿日期:2019-04-27 出版日期:2019-10-28 发布日期:2019-10-28
  • 通讯作者: 邢恩宏,实验师,天津理工大学,天津市先进机电系统设计与智能控制重点实验室,天津市 300384;机电工程国家级实验教学示范中心(天津理工大学),天津市 300384
  • 作者简介:陈磊,男,1993年生,天津市人,汉族,天津理工大学在读硕士,主要从事生物力学研究。
  • 基金资助:

    国家自然科学基金项目(11702191),项目负责人:吕林蔚;国家重点研发计划项目(2017YFB1303300),项目负责人:葛为民;天津市智能制造科技重大专项资助项目(17ZXZNGX00110),项目负责人:葛为民

Mechanical properties of artificial cartilage scaffolds

Chen Lei1, Ge Weiming1, 2, Lü Linwei1, 2, Lei Ming3, Teresa Zielińska4, Xing Enhong1, 2
  

  1. 1Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China; 2National Experimental Teaching Demonstration Center of Electromechanical Engineering (Tianjin University of Technology), Tianjin 300384, China; 3School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; 4 Warsaw University of Technology, Warsaw 00-661, Poland
  • Received:2019-04-27 Online:2019-10-28 Published:2019-10-28
  • Contact: Xing Enhong, experimenter, Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China; National Experimental Teaching Demonstration Center of Electromechanical Engineering (Tianjin University of Technology), Tianjin 300384, China
  • About author:Chen Lei, Master candidate, Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China
  • Supported by:

    the National Natural Science Foundation of China, No. 11702191 (to LLW); the National Key Research and Development Plan Program, No. 2017YFB1303300 (to GWM); Tianjin Intelligent Manufacturing Technology Major Special Funding Project, No. 17ZXZNGX00110 (to GWM)

摘要:

文章快速阅读:

 

文题释义:
丝素蛋白/Ⅱ型胶原支架:丝素蛋白由蚕丝处理后得到,Ⅱ型胶原由牛肩胛软骨中提取,以上2种材料均具有良好的生物相容性。将上述2种材料混合后,3D打印成60 mm×60 mm×2.4 mm多层、多孔结构,应用中剪裁成适宜大小。此次实验均采用10 mm×10 mm×2.4 mm的丝素蛋白/Ⅱ型胶原支架。
层间力学状态:实验中的支架具有6层结构,在细胞培养过程中细胞吸附在支架的内部结构上;在支架产生宏观变形后,每一层应变并不相同,计算出每一层的应变值,并与细胞培养实验进行对比,可得出最适合细胞培养的应变值。
 
 
背景:软骨组织工程修复是一个修复软骨缺损的重要方法,软骨组织工程丝素蛋白/Ⅱ型胶原支架具有良好的生物相容性,这种黏弹性材料兼有固体的特性和液体特性,其层间的微观力学性能与细胞培育密切相关。
目的:掌握支架宏观载荷与层间微观作用力之间的关系,控制宏观载荷数值,使支架内部达到最适合细胞增殖的载荷状态。
方法:设计丝素蛋白/Ⅱ型胶原空白支架的压缩应力松弛实验,使用实验数据拟合黏弹性本构方程后构建支架有限元模型,对实验过程仿真计算,获取支架层间的力学状态。
结果与结论:①支架的各层受力分布在1.185-3.305 N,各层受力均随时间的增长而逐步减小,并最终收敛;②支架每一层的位移随着层数的增加而增加,这说明从支架底层的位移开始叠加每一层的位移量,最终导致位移量随着支架层数的上升而递增;③支架各层间的应变数值在1.82×10-2-4.47×10-2区间内,这个区间可以直接体现组织培养过程中对种子细胞最佳的压缩状态;④当支架宏观发生10%应变时,各层的应变值分布在2%-7%这一数值范围;当支架宏观发生5%应变时,各层应变值分布在1%-2%;当支架宏观发生20%应变时,各层应变值分布在8%-18%;通过对比得出:4%-7%为细胞增殖的最优应变量。

关键词: 软骨支架, 丝素蛋白/Ⅱ型胶原支架, 有限元, 压缩载荷, 黏弹性, 力学性能, 生物材料, 组织工程

Abstract:

BACKGROUND: Cartilage tissue engineering repair is an important method to repair cartilage defects. Silk fibroin/type II collagen scaffolds are viscoelastic materials that have excellent biocompatibility and exhibit solid and liquid characteristics, but the micro-mechanical properties between different layers are still a problem worthy of attention.
OBJECTIVE: To obtain the relationship between macro-loading force of scaffold and micro-force between layers, so as to obtain the macro-force under the micro-force of optimal cell proliferation.
METHODS: The compression stress relaxation experiment of the blank scaffold was designed, and the finite element model of the scaffold was constructed after fitting viscoelastic constitutive equation with experimental data. The stress relaxation of the model was simulated to obtain the mechanical state between the scaffold layers.
RESULTS AND DISCUSSION: The force of each layer of the scaffold was distributed at 1.185-3.305 N, and the stress of each layer gradually decreased with time until it converged. The total displacement of the scaffold increased with the number of layers. The strain values between the layers of the scaffold ranged from 1.82x10-2 to 4.47x10-2. This value indicates that this is the best state for culturing cells. The finite element analysis results show that when 10% strain occurred macroscopically in the scaffold, the strain value of each layer was distributed in the numerical range of 2%-7%. When the macro strain of the stent was 5%, the strain value of each layer was distributed between 1% and 2%. When 20% strain occurred on the scaffold macroscopically, the strain value of each layer was distributed between 8% and 18%. Comparison results revealed the optimal strain value for cell proliferation was 4%-7%.

Key words: cartilage scaffold, silk fibroin/type II collagen, finite element, compression load, viscoelasticity, mechanical behavior, biomaterials, tissue Engineering

中图分类号: