中国组织工程研究

• 药物控释材料 drug delivery materials •    

磁性壳聚糖微球的制备及表征

李  黎1,马  力2,李  鹤2   

  1. 1成都农业科技职业学院,四川省成都市  611130;2西华大学,四川省成都市  610039
  • 收稿日期:2019-07-21 出版日期:2020-03-20
  • 作者简介:李黎,女,1982年生,四川省成都市人,硕士,讲师,食品专业高级工程师,主要从事食品生物技术研究。

Preparation and characterization of magnetic chitosan microspheres

Li Li1, Ma Li2, Li He2   

  1. 1Chengdu Agricultural College, Chengdu 611130, Sichuan Province, China; 2Xihua University, Chengdu 610039, Sichuan Province, China
  • Received:2019-07-21 Online:2020-03-20
  • About author:Li Li, Master, Lecturer, Chengdu Agricultural College, Chengdu 611130, Sichuan Province, China

摘要:

文章快速阅读


文题释义:
磁性高分子微球:是指通过适当的方法使有机高分子与无机磁性物质结合起来形成的具有一定磁性及特殊结构的微球,其不但可以通过共聚、表面改性等化学反应方法在微球表面引入多种反应性功能基团,也可通过共价键来结合酶、细胞和抗体等生物活性物质,还可对外加磁场表现出强烈的磁响应性,进行快速运动或分离。
壳聚糖:为甲壳素脱乙酰基的衍生物,属多糖类,是一种生物相容性好、易生物降解、无毒、廉价易得的天然高分子生物材料,易于加工成粉、膜、多孔微球、凝胶、纳米粒子等多种形态。

背景:磁性高分子微球作为酶、细胞、药物等的载体被广泛地应用到了生物工程、细胞学和生物医学等领域。
目的:制备出粒径小、分散性好、磁响应强、安全无毒的磁性高分子微球。
方法:以Fe3O4磁性粒子为内核、液体石蜡为分散介质、Span-80为乳化剂、戊二醛为交联剂,采用反相悬浮交联法制备磁性壳聚糖微球,探讨了交联时间(0,20,40,60,80,100,120,150,180 min)、反应温度(20→50 ℃、30→60 ℃、40→70 ℃、50→80 ℃)、壳聚糖质量浓度(0.01,0.02,0.03,0.04,0.05 g/mL)、Fe3O4/壳聚糖质量比(1∶1、1∶2、1∶3、1∶4)、戊二醛用量(8-10 mL)、液体石蜡用量(40,60,80,100 mL)、搅拌速度(0-2 000 r/min)等因素对磁性壳聚糖微球性能的影响,并对其形态、粒径、分散性、磁响应性进行了表征。
结果与结论:①实验发现制备磁性壳聚糖微球的最佳条件为:从加入交联剂戊二醛开始计时,先于40 ℃反应1 h再升温至70 ℃继续反应120 min,壳聚糖浓度为0.02 g/mL,Fe3O4/壳聚糖质量比为1∶2,液体石蜡用量为80 mL,搅拌速度为1 200 r/min,戊二醛用量为8-10 mL;②磁性壳聚糖微球在外加磁场下具有强磁性能,在自然状态下具有良好的悬浮稳定性;③壳聚糖与Fe3O4纳米粒子形成的复合微粒呈球状,纳米粒子被包裹在微球内,为核壳结构,微球表面较平滑,单分散性好;④制备的磁性壳聚糖微球粒径介于1-15 μm之间,该粒径利于微球在反应体系中分散和磁分离。

关键词: 磁性微球, 高分子微球, 生物材料, 壳聚糖, 固定化载体, 磁响应, 反相悬浮交联法, 四氧化三铁

Abstract:

Abstract
BACKGROUND: As carriers of enzymes, cells and drugs, magnetic polymer microspheres have been widely used in the fields of bioengineering, cytology, and biomedicine.
OBJECTIVE: To prepare the magnetic polymer microspheres characterized by small particle size, good dispersion, strong magnetic response, safety, and non-toxicity.
METHODS: Magnetic chitosan microspheres were prepared by reverse phase suspension process using Fe3O4 as core, paraffin as dispersed medium, Span-80 as emulsifier, and glutaraldehyde as cross-linking agent. The effects of factors including crosslinking time (0, 20, 40, 60, 80, 100, 120, 150 and 180 minutes), reaction temperature (20→50 °C, 30→60 °C, 40→70 °C, 50→80 °C), the concentration of chitosan (0.01, 0.02, 0.03, 0.04, 0.05 g/mL), Fe3O4/ chitosan mass ratio (1∶1, 1∶2, 1∶3, 1∶4), the amount of glutaraldehyde (8-10 mL), the
amount of liquid paraffin (40, 60, 80, 100 mL), and stirring speed (0-2 000 r/min) on the properties of magnetic chitosan microspheres. The morphology, particle size, dispersion, and magnetic responsiveness of magnetic chitosan microspheres were characterized.
RESULTS AND CONCLUSION: The optimum conditions for preparing magnetic chitosan microspheres were as follows: starting with glutaraldehyde as crosslinking agent, the reaction was performed at 40 °C for 1 hour and then at 70 °C for 120 minutes. The concentration of chitosan was 0.02 g/mL, the mass ratio of Fe3O4/chitosan was 1∶2, the dosage of liquid paraffin was 80 mL, the stirring speed was 1 200 r/min, and the dosage of glutaraldehyde was 8-10 mL. Magnetic chitosan microspheres had strong magnetic properties under the applied magnetic field and had good suspension stability in the natural state. The Fe3O4/chitosan composites were spherical, and the nanoparticles were encapsulated in the microspheres, which were core-shell structure. The surface of the microspheres was smooth and monodisperse. The magnetic chitosan microspheres prepared had a diameter of 1-15 μm, which is beneficial to the dispersion and magnetic separation of the microspheres in the reaction system.

Key words: magnetic microsphere, polymer microsphere, biomaterials, chitosan, immobilized carrier, magnetic response, reverse phase suspension polymerization, Fe3O4

中图分类号: