中国组织工程研究 ›› 2016, Vol. 20 ›› Issue (3): 364-369.doi: 10.3969/j.issn.2095-4344.2016.03.011

• 抗菌抗病毒材料 antibacterial and antiviral materials • 上一篇    下一篇

超声对金黄色葡萄球菌生物膜的体外破坏作用

张 伟,蔚 芃,陈 路   

  1. 川北医学院附属医院,四川省南充市  637000
  • 收稿日期:2015-11-17 出版日期:2016-01-15 发布日期:2016-01-15
  • 作者简介:张伟,男,1987年生,四川省苍溪县人,汉族,2015年川北医学院临床医学院毕业,硕士,主要从事骨与关节损伤修复与重建研究。

In vitro destructive effect of ultrasound on Staphylococcus aureus biofilms

Zhang Wei, Wei Peng, Chen Lu
  

  1. Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
  • Received:2015-11-17 Online:2016-01-15 Published:2016-01-15
  • About author:Zhang Wei, Master, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China

摘要:

文章快速阅读:

文题释义:

生物膜:由依靠胞外产物而吸附于固体表面的微生物集落构成,并能结合有机和无机成分;形成包含复杂的理化过程和生物群落的相互作用。生物膜系统是真核细胞特有的系统,由细胞器膜,细胞膜和核膜构成,这些生物膜的组成成分和结构相似,结构和功能密切相关,表现着协调统一性。
超声波:是一种频率高于20 000 Hz的声波,它的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大于人的听觉上限而得名。

 

背景:有研究表明,超声增强抗生素杀菌能力的效力表现为强度依赖性,即超声强度越高其效力越大。

目的:观察不同强度超声对金黄色葡萄球菌及其生物膜的破坏作用。
方法:采用引导片培养法体外培养金黄色葡萄球菌生物膜,分为3组干预,对照组不作任何处理;低强度超声组采用强度为500 mW/cm、频率为200 kHz的脉冲超声波干预10 min;高强度超声组采用强度为40 W、频率1 MHz的连续超声波干预10 min。采用超声振荡-活菌计数法计数细菌菌落;采用碘化丙啶(PI)和FITC-ConA分别标记细菌DNA和多糖,激光扫描共聚焦显微镜检测生物膜成型情况。
结果与结论:高强度超声组细菌菌落低于对照组、低强度超声组(P < 0.05),后两组间细菌菌落比较差异无显著性意义。低强度超声组红色荧光和绿色荧光的数量及密集程度与对照组无明显区别,高强度超声组的红色荧光和绿色荧光相对于前两组有明显减少。表明低强度超声不能杀灭细菌且对细菌生物膜的破坏作用微小,高强度超声能有效杀灭细菌,并且对细菌生物膜具有显著破坏作用。 
ORCID: 0000-0002-8676-6888(张伟)

关键词: 生物材料, 材料相容性, 抗菌抗病毒材料, 细菌生物膜, 金黄色葡萄球菌, 激光共聚焦显微镜, 免疫荧光技术, 超声空化

Abstract:

BACKGROUND: Studies have shown that the ultrasound enhances the on bactericidal activity of antibiotics in an intensity-dependent manner, that is, the higher the ultrasound intensity, the greater its effectiveness.
OBJECTIVE: To study the destructive effect of different intensities of ultrasound on Staphylococcus aureus and its biofilm.
METHODS: Staphylococcus aureus biofilms were cultured in vitro using guide sheet culture method and divided into three groups for intervention. The biofilm in the control group received no treatment. The biofilm in the low-intensity ultrasound group was intervened by pulsed ultrasound with an intensity of 500 mW/cm and frequency of 200 kHz for 10 minutes. The biofilm in the high-intensity ultrasound group was intervened by continuous ultalsound with an intensity of 40 W and frequency of 1 MHz for 10 minutes. Bacterial colonies were counted using ultrasonic oscillation-live bacteria counting method. DNA and polysaccharide of the bacteria were respectively marked using propidium iodide and FITC-ConA. The molding of the bilfilm was determined using laser scanning confocal microscope.
RESULTS AND CONCLUSION: The number of bacterial colonies in the high-intensity ultrasound group were lower than that in the control and low-intensity ultrasound groups (P < 0.05), and there were no significant differences between control and low-intensity ultrasound groups. There were no significant differences in the number and intensity of red fluorescence and green fluorescence between low-intensity ultrasound and control groups; however, the number and intensity of red fluorescence and green fluorescence in the high-intensity ultrasound group were significantly decreased compared with the low-intensity ultrasound and control groups. These results demonstrate that the low-intensity ultrasound cannot kill the bacteria and it has a tiny destructive effect on the biofilm of bacteria; however, the high-intensity ultrasound can effectively kill the bacteria and has a strong destructive effect on the bilfilm of bacteria.