锥形束CT评价上颌快速扩弓后鼻上颌复合体及上气道的三维形态改变

罗春花1, 郑之峻2, 徐卫华1, 王青云3(贵医大的口腔医学院, 贵州省贵阳市 550003; 2 贵州省口腔医院正畸科, 贵州省贵阳市 550003)


DOI:10.3969/j.issn.2095-4344.2017.36.008 ORCID: 0000-0001-6598-490X(罗春花)

文章阅读:

上颌快速扩弓矫治青少年上颌发育不足

目的: 利用锥形束 CT 和 Dolphin 软件观察生长发育期鼻上颌复合体及上气道形态的变化。

方法: 选择上颌发育不充分生长发育期锥形患者 30 例, 采用上颌快速扩弓治疗, 所有患者矫正前后均拍摄锥形束 CT, 用 Dolphin 软件进行图像处理, 三维重建、定点及测量分析, 评价矫治前后患者鼻上颌复合体及上气道形态的变化。

结果与讨论: (1) 治疗后鼻中隔长度增加 (2.13±1.80) mm, 上颌骨宽度增加 (4.12±2.15) mm, 唇力矫正后影响有显著性差异 (P < 0.05); (2) 治疗后鼻中隔前鼻孔宽度增加 (3.30±2.56) mm, 面积增加 (75.37±53.92) mm², 唇力矫正后有显著性差异 (P < 0.05), 而欠予有无显著变化; (3) 治疗后鼻咽部中鼻甲面积增加 (33.57±57.10) mm², 体积增加 (1009.59±350.91) mm³, 唇力矫正后有显著性差异 (P < 0.05); (4) 唇力和舌咽及鼻咽表面面积及体积无显著变化, 各段气道高度无显著变化; (5) 竖起生长发育期上颌牙弓狭窄患者经上颌快速扩弓治疗后, 鼻上颌复合体增加; 竖起体积及面积增加, 咽气道后气道明显变化。

文题释义:

上颌快速扩弓: 临床矫治上颌横向发育不足的常用方法。其原理是在短期对上颌骨施加较大的矫形力，即在牙间开观察未及发生改建时，这种应力在横束迅速堆积，导致骨缝处的纤维连续性被拉开甚至部分断裂。骨缝开, 从而使上颌宽度得到扩展。

鼻上颌复合体: 是由上颌骨、额骨、鼻骨、鼻甲组骨、上牙列及部分颅骨组成的骨性结构, 各个骨块间以软骨缝或骨缝连接, 存在上颌窦、鼻腔、鼻窦等空腔结构。

摘 要

背景: 往常利用二维片、石膏模型等方法测量上颌快速扩弓矫正后颌骨及气道的变化, 但存在失真、片面、重叠等缺陷。锥形束 CT 的出现实现了对颌骨及气道的三维重建及测量并有效避免了以上问题。

目的: 利用锥形束 CT 和 Dolphin 软件观察生长发育期鼻上颌复合体及上气道形态的变化。

方法: 选择上颌宽度发育不充分生长发育期锥形患者 30 例, 采用上颌快速扩弓治疗, 所有患者矫正前后均拍摄锥形束 CT, 用 Dolphin 软件进行图像处理, 三维重建、定点及测量分析, 评价矫治前后患者鼻上颌及上气道形态的变化。

结果与讨论: (1) 治疗后鼻中隔长度增加(2.13±1.80) mm, 上颌骨宽度增加(4.12±2.15) mm, 唇力矫正后影响有显著性差异 (P < 0.05); (2) 治疗后鼻中隔前鼻孔宽度增加 (3.30±2.56) mm, 面积增加 (75.37±53.92) mm², 唇力矫正后有显著性差异 (P < 0.05), 而欠予有无显著变化; (3) 治疗后鼻咽部中鼻甲面积增加 (33.57±57.10) mm², 体积增加 (1009.59±350.91) mm³, 唇力矫正后有显著性差异 (P < 0.05); (4) 唇力和舌咽及鼻咽表面面积及体积无显著变化, 各段气道高度无显著变化; (5) 竖起生长发育期上颌牙弓狭窄患者经上颌快速扩弓治疗后, 鼻上颌复合体增加; 竖起体积及面积增加, 咽气道后气道明显变化。

关键词: 组织构建; 组织工程; 上气道; 上颌发育不足; 上颌快速扩弓; 三维重建; 锥形束 CT

主题词: 上颌疾病; 组织工程

缩略语: 上颌快速扩弓: rapid maxillary expansion, RME

Three-dimensional reconstruction of the nasomaxillary complex and upper airway following rapid maxillary expansion by cone-beam CT

Luo Chun-hua1, Zheng Zhi-jun2, Xu Wei-hua1, Wang Qing-yun2 (School of Stomatology, Guizhou Medical University, Guiyang 550003, Guizhou Province, China; 2 Department of Orthodontics, Guizhou Hospital of Stomatology, Guiyang 550003, Guizhou Province, China)

Abstract

BACKGROUND: Two-dimensional radiographs and plaster models are used to evaluate the changes in the maxillary bone and airway after rapid maxillary expansion, but the shortcomings like distortion, one-sidedness, and overlapping appear. Cone-beam CT can effectively solve the above problems and achieve the three-dimensional reconstruction and measurement of the maxillary bone and airway.
OBJECTIVE: To investigate the morphological changes of nasomaxillary complex and upper airway in adolescent patients with malocclusion after rapid maxillary expansion by cone-beam CT and Dolphin software.

METHODS: Thirty adolescent patients with malocclusion were enrolled to receive rapid maxillary expansion. All patients underwent cone-beam CT examination before and after treatment, and Dolphin software was used for image processing, three-dimensional reconstruction, fixed point and measurement, to evaluate the morphological changes of the nasomaxillary complex and upper airway.

RESULTS AND CONCLUSION: After treatment, the nasal cavity and maxillary width was increased by (2.13±1.80) and (4.12±2.15) mm, respectively (P<0.05); the coronal diameter and area of the airway on the hard plate was increased by (3.30±2.056) mm and (75.37±53.92) mm², respectively (P<0.05), and all above indexes showed significant difference compared with baseline. While the sagittal diameter of the airway on the hard plate showed no significant changes.

After treatment, the upper airway showed a significant increase in the area and volume at the velopharynx and glossopharynx, as well as the height at each part. To conclude, in the growing patients with malocclusion after rapid maxillary expansion, the nasomaxillary complex and area and volume of upper airway at the nasopharynx showed a significant increase, but the airway at the velopharynx and glossopharynx reveal no significant changes.

Subject headings: Maxillary Diseases; Pyramidal Tracts; Tissue Engineering

Cite this article: Luo CH, Zheng JZ, Xu WH, Wang QY. Three-dimensional reconstruction of the nasomaxillary complex and upper airway following rapid maxillary expansion by cone-beam CT. Zhongguo Zuzhi Gongcheng Yanjiu. 2017;21(36):5781-5786.
整患者三维重建图像(图2)，设额耳平面为水平面，确定通过C2棘突中心线的矢状面为正中矢状面(图3)，调整冠状面，测量上颌骨牙槽及骨性肌19(图4)。在正中矢状面上确定上气道研究范围：鼻咽段(鼻咽顶至硬腭平面)、口咽段(硬腭平面至C2下缘)、喉咽段(上段)C2下缘至C3下缘)。测量项目及定义见表1。

1.6 主要观察指标 ①RMF治疗后鼻上颌体变化：上颌牙齿、前磨牙、第一磨牙牙冠及牙根间宽度变化；鼻腔宽度；上颌骨宽度；②RMF治疗后上气道变化：各段气道高度、体积、表面积、横截面积、最大矢状径及最大冠状径。

1.7 统计学分析 利用SPSS 19.0统计软件进行数据分析，数据以x±s表示，各项数据均符合正态分布，对矫治前后及矫治后进行配对t检验，检验水准均定为α=0.05，P < 0.05为差异有显著性意义。

2 结果 Results

2.1 参与者数量分析 30例青少年患者均完成RMF治疗，无脱落，无失访。所有患者均进入结果分析，试验流程图见图5。

2.2 扩弓后上颌复合体变化 如图2所示。RMF后所有横向骨性指标(上颌骨宽度、鼻外侧宽度、前部上颌骨宽度、前后部鼻腔宽度)及牙性指标(上颌尖牙、双尖牙、第一磨牙)均有明显增大。差异有显著性意义(P < 0.05)。

2.3 扩弓后上气道的变化 扩弓后硬腭平面冠状径长度明显增加，面部有显著性意义(P < 0.05)；矫治后上气道最小截面积处气道面积有所增大，但差异无显著性意义(P > 0.05)；鼻咽段面积，体积均较扩弓前有显著增大，差异有显著性意义(P < 0.05)；咽鼓管及鼻咽部气道入径参数均无明显变化(P > 0.05)；扩弓后上气道各段高度及明显变化(P > 0.05)，见图3-6。

2.4 不良事件 患者扩弓矫治初期口腔轻度异物感，随治疗时间延长异物感减轻。

3 讨论 Discussion

3.1 RMF对上颌复合体的影响 RMF主要利用患者生长发育的潜力，通过矫形力分离上颌骨与软组织增加上颌骨的宽度。本研究中，上颌尖牙、前磨牙及第一磨牙的牙冠及牙根间宽度均有明显增加，提示RMF可有效扩大上颌骨宽度。解决上颌骨宽度不调，这与以往研究一致[18]。相应牙根间宽度增加量较牙根间宽度增加量大，提示相应牙根间整体移动也发生侧向移动。这与以往研究结果一致[17,18]。扩弓结束时，前部上颌骨宽度(2.52±0.94) mm，前部
表3 患者上颌快速扩弓矫治前后上气道各截面变化

<table>
<thead>
<tr>
<th>测量项目</th>
<th>前治前</th>
<th>前治后</th>
<th>前治后-前治前</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>硬腭骨气道横截面积 (mm²)</td>
<td>270.19±108.40</td>
<td>345.56±109.50</td>
<td>75.37±53.92</td>
<td>0.001</td>
</tr>
<tr>
<td>第二软腭上狭义气道横截面面积 (mm²)</td>
<td>103.82±32.50</td>
<td>127.84±73.67</td>
<td>24.03±63.15</td>
<td>0.163</td>
</tr>
<tr>
<td>第三软腭下狭义气道横截面面积 (mm²)</td>
<td>201.35±88.28</td>
<td>220.08±88.73</td>
<td>18.73±70.80</td>
<td>0.323</td>
</tr>
<tr>
<td>气道最窄截面面积 (mm²)</td>
<td>91.50±39.93</td>
<td>101.38±44.30</td>
<td>9.88±36.95</td>
<td>0.318</td>
</tr>
<tr>
<td>硬腭后气道横截面积 (mm²)</td>
<td>13.70±3.38</td>
<td>13.88±3.50</td>
<td>0.18±6.14</td>
<td>0.673</td>
</tr>
<tr>
<td>第二软腭下狭义气道横截面积 (mm²)</td>
<td>8.23±2.72</td>
<td>8.63±2.43</td>
<td>0.40±2.21</td>
<td>0.494</td>
</tr>
<tr>
<td>第三软腭下狭义气道横截面积 (mm²)</td>
<td>10.36±3.32</td>
<td>10.97±3.63</td>
<td>0.62±3.30</td>
<td>0.323</td>
</tr>
<tr>
<td>气道最窄截面面积 (mm²)</td>
<td>14.60±44.28</td>
<td>15.72±5.10</td>
<td>1.11±33.87</td>
<td>0.284</td>
</tr>
<tr>
<td>硬腭后气道横截面积 (mm²)</td>
<td>20.37±4.29</td>
<td>23.67±4.40</td>
<td>3.30±2.96</td>
<td>0.001</td>
</tr>
<tr>
<td>第二软腭下狭义气道横截面积 (mm²)</td>
<td>13.41±3.83</td>
<td>13.92±3.54</td>
<td>0.50±3.74</td>
<td>0.061</td>
</tr>
<tr>
<td>第三软腭下狭义气道横截面积 (mm²)</td>
<td>25.13±3.68</td>
<td>25.11±4.44</td>
<td>-0.22±4.04</td>
<td>0.983</td>
</tr>
<tr>
<td>气道最窄截面面积 (mm²)</td>
<td>5.90±1.89</td>
<td>6.19±1.60</td>
<td>0.28±2.79</td>
<td>0.699</td>
</tr>
</tbody>
</table>

表4 患者上颌快速扩弓矫治前后气道各段表面面积变化

<table>
<thead>
<tr>
<th>测量部位</th>
<th>前治前</th>
<th>前治后</th>
<th>前治后-前治前</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>咽喉部</td>
<td>118.70±62.68</td>
<td>152.27±62.38</td>
<td>33.57±75.10</td>
<td>0.039</td>
</tr>
<tr>
<td>口径部</td>
<td>258.76±83.93</td>
<td>250.82±69.43</td>
<td>-7.94±46.74</td>
<td>0.536</td>
</tr>
<tr>
<td>咽喉部</td>
<td>185.86±377.91</td>
<td>205.97±55.55</td>
<td>20.10±69.80</td>
<td>0.283</td>
</tr>
</tbody>
</table>

表5 患者上颌快速扩弓矫治前后气道各段表面面积变化

<table>
<thead>
<tr>
<th>测量部位</th>
<th>前治前</th>
<th>前治后</th>
<th>前治后-前治前</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>咽喉部</td>
<td>2.84±681.35</td>
<td>3.38±391.30</td>
<td>0.53±480.72</td>
<td>0.047</td>
</tr>
<tr>
<td>口径部</td>
<td>4.32±341.88</td>
<td>4.33±302.54</td>
<td>0.01±94.38</td>
<td>0.951</td>
</tr>
<tr>
<td>咽喉部</td>
<td>3.55±91.91</td>
<td>3.94±53.24</td>
<td>0.39±168.72</td>
<td>0.387</td>
</tr>
</tbody>
</table>

Table 3 Changes of the cross-sectional area of the upper airway at each part before and after rapid maxillary expansion

Table 4 Changes of the surface area of the upper airway at each part before and after rapid maxillary expansion

Table 5 Changes of the volume of the upper airway at each part before and after rapid maxillary expansion
鼻底颌骨增大（3.23±0.08 mm）：后部 鼻腔宽度 增宽（1.64±0.11 mm），后部鼻底颌骨宽度增大（3.03±3.28 mm）。根据以上数据显示，RME治疗后，鼻底颌骨复合体表现为上窄下宽，前宽后窄的楔形增大，这与以往研究一致[13, 19]，说明RME对鼻底颌骨复合体有扩大作用。De Almeida等[20]研究认为，RME对青少年唇腭裂患者鼻底颌骨复合体有明显的横向扩展作用，有效增加了上颌底宽，为后期治疗提供了有利条件。

研究发现，RME扩大了尖牙间的宽度，其位于后鼻底，导致鼻腔阻力减小[21]。研究显示，阻塞性睡眠呼吸暂停低通气综合症患者伴有上颌狭窄的患者，RME作为最常用的解除上颌狭窄的方法，可作为一种治疗伴有上颌狭窄的阻塞性睡眠呼吸暂停低通气综合症患者的方法[21]。但因为无生长发育潜力的成年患者，只能通过手术方式减缓症状[22-23]。

3.2 与RME影响的有研究显示，上颌骨牙弓狭窄患者往往存在较高的鼻通气阻力[20]，软腭后气道也存在明显狭窄。研究发现，RME可扩大上气道的宽度，使舌体上升，改善了软腭留的通气状态。研究结果显示，RME后硬腭平面气道冠状径及面积显著增加，而矢状径及鼻根部高度明显变化，RME后鼻咽部分气道表面及气道容积也呈显著增加，提示RME治疗后气道变化可能是由于气道冠状径的增大。第二，三颈椎前下缘处气道形态均无明显变化，与以往研究结果一致[28-32]。本研究结果显示，RME治疗前后气道最小横截面积各区域测量值无明显变化，与Zhai等[29]研究结果一致。但李磊等[31]研究发现，RME矫治后上气道最小横截面积冠状径和较面积矫治前显著增加。作者认为，结论的不同可能是因为样本差异、拍摄头位、拍摄时患者呼吸或吞咽等行为多因因素导致。本研究锥体束CT为卧位拍摄，而李磊研究的锥体束CT采用坐位拍摄。有研究认为，气道大小与患者体位有关[22-23]，从仰卧位到直立体位时，上气道的横截面积会增大[34]。

本研究增加了气道高度的测量，结果显示，RME前后气道高度无明显变化，说明RME对气道垂直方向的变化不大。口咽段、喉咽段气道参数变化均不明显，提示RME治疗主要扩大气道上段的容积，对气道中下段改变不明显。

3.3 测量方法的选择 与传统的二维平片(包括头颅侧位片和头颅)相比，锥体束CT可完全规避体位、放射、变形、影像重叠等误差，且头颅片仅局限于测量矢状方向的变化，不能反映气道的三维结构[35]，能很好的反映骨组织结构，对软组织的灵敏度欠佳。MRI和螺旋CT等多维重建技术由于价格高、扫描时间长、辐射较大难以广泛应用于U气道研究。锥体束CT空间分辨率高，能获得最低0.1 mm的真伪数据设定[36]，能清楚地观察颌骨及牙齿结构的微小变化，有利于精确测量气管的骨质前移和骨质密度的细微变化[33]。由于气道和周围组织密度差大，可获得清晰的三维图像，还可重建各组织真实解剖形态和相互位置关系，能准确定位气道边界，而可以得到气道的三维立体影像[36]。患者呼吸是动态过程，轮廓锥体束CT扫描时间短，但不能将呼吸停止在某个时相，且不同呼吸时气道软组织(软腭、会厌顶、会厌底等)的位置也有所不同，这在一定程度上影响了气道测量的准确性[39]。

本研究参考以往文献对气道分段的方法[12-14]，并对气道分段，以软骨、C2、C3前缘点为气道分界平面，原因可为重复性较好，一定程度上保证三维重建中测量的准确性，降低了因软组织位置变化引起的不必要误差，并没有违背广泛的可比的气道分段方法。

3.4 特殊说明 本文中因扩弓强度较大，均在1个月内完成RME，故可不考虑生长因素对气道结果的影响。本研究是即刻研究，避免了从拆除扩弓器到锥体束CT复查所造成的复发对研究结果的干扰，故没有设立对照组。虽然扫描时间极短，但对扫描时呼吸的控制，可能未影响气道对气道测量的影响。因选用锥体束CT，该影像设备应用不长，故病例数较少，所求结论有待丰富资料后继续研究。

综上所述，RME可以有效地扩大上颌骨复合体的冠状径，显著增大鼻咽气道容积，但对气道下段影响较小。本研究仅仅是在形态方面分析RME对上颌骨复合体及上气道的影响，但形态与功能的相关性尚需更深入的研究。

致谢：感谢贵阳市口腔医院放射科对提供技术指导及贵阳市口腔医院正畸科提供软件支持。

作者贡献：试验设计为罗华春、邱健和。试验实施为邱健和。王春云。试验评估为徐华卫。资料收集为罗华春、罗华春。邱健和。徐华卫审核。

利益冲突：所有作者共同认可文章无相关利益冲突。

伦理问题：临床试验研究的实验符合赫尔辛基宣言和医院对人体研究相关的伦理要求。试验前所有参与研究的患者已签署知情同意书。参与研究的患者及其家属为自愿参加。在充分了解本治疗方案的前题下签署“知情同意书”。

文章查重：文章出版前已经过CNKI反剽窃文献检测系统进行3次查重。

文章发表：文章发表于中国口腔正畸学杂志，符合本刊编辑宗旨。

作者声明：所有作者对研究和撰写的论文中出现的研究行为承担法律责任。论文中涉及的原始资料和数据(包括计算机数据库库)记录及样本保管有规定保存、分享和销毁，可接受核查。

文章版权：文章版权为作者单位及作者共同所有，已被相关版权协议授权。

开放获取声明：这是开放获取的文献，发表在《口腔正畸学杂志》与《口腔正畸学杂志》版权的版权相关协议。
参考文献 References


[37] 吕国杰, 李盛明, 周伟, 等. 锥形束CT在正后牙合畸形治疗中的应用[J]. 中国医疗设备, 2016, 31(3):118-120.
